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Abstract

This paper proposes a simple, yet effective, modification to scaling factor and crossover rate
adaptation in Success-History based Adaptive Differential Evolution (SHADE), which can be
used as a framework to all SHADE-based algorithms. The performance impact of the proposed
method is shown on the real-parameter single objective optimization (CEC2015 and CEC2017)
benchmark sets in 10, 30, 50, and 100 dimensions for all SHADE, L-SHADE (SHADE with
linear decrease of population size), and jSO algorithms. The proposed distance based parameter
adaptation is designed to address the premature convergence of SHADE–based algorithms in
higher dimensional search spaces to maintain a longer exploration phase. This design effective-
ness is supported by presenting a population clustering analysis, along with a population diver-
sity measure. Also, the new distance based algorithm versions (Db SHADE, DbL SHADE, and
DISH) have obtained significantly better optimization results than their canonical counterparts
(SHADE, L SHADE, and jSO) in 30, 50, and 100 dimensional functions.

Keywords: Differential Evolution, Distance Based, Parameter Adaptation, Success-History,
Scaling Factor, Crossover Rate

1. Introduction

The Differential Evolution (DE) algorithm was developed in 1995 by Storn and Price [1] and
formed a basis for a family of successful algorithms for continuous optimization. The broad
research field around DE was summarized most recently in [2].

The continuing research in the DE area provides a plethora of improvements to the original
algorithm, and their quality can be tracked easily by following the results of a continuous op-
timization competition jointly with Congress on Evolutionary Computation (CEC), where DE
based algorithms are placed steadily on the top [3, 4, 5, 6, 7, 8, 9, 10].

A common denominator for the best DE variants [11] since 2013 is an algorithm developed by
Tanabe and Fukunaga – Success-History based Adaptive Differential Evolution (SHADE) [12].
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This algorithm adapts its control parameters, crossover rate CR and scaling factor F, during
the optimization process, in order to suit the given problem, and it also incorporates “current-
to-pbest/1” mutation strategy with external archive of inferior solutions from JADE [13]. The
SHADE algorithm was placed 3rd in the CEC2013 competition, and the authors presented an
improved version the following year. This version added linear decrease in population size, and
the algorithm was titled L-SHADE [14]. L-SHADE won the competition in CEC2014, and the
winners of the following years, SPS-L-SHADE-EIG – winner CEC2015 [15], LSHADE EpSin
– joint winner CEC2016 [16], jSO – announced winner at CEC2017 [17], were all based on
this algorithm. The versions of SHADE, especially those referred to as L-SHADE, are probably
among the most effective evolutionary algorithms [18] and, with exception of the jSO, some of its
other variants have already benefited from general enhancements [19]. While new enhancements
of these DE algorithms add new mechanism or tune parameters, similar as it has been seen
in other optimization algorithms [20], and there are more aspects addressed by different DE
application domains, as covered in respective substantial surveys on these domains [21, 22, 23,
24, 25, 26, 27, 18]. Furthermore, theoretical analyses in support of DE also exist, like [28, 29,
30, 31].

All previously mentioned algorithms share the same idea of balancing between exploration
and exploitation abilities, and they try to achieve it in various ways. As parameter control is one
of the important aspects in evolutionary algorithms [32], and being highlighted experimentally
in DE as well [26], the focus of this paper will be on improvement and analysis of an aspect
of DE parameter control, specifically the SHADE variants that are currently leading in the DE
progress [11].

The motivation behind this research is following two ideas. Firstly, the main aim is to address
the premature convergence issue of the SHADE based family of algorithms through the novel
distance based parameter adaptation, securing a longer exploration phase mainly in the higher
dimensional search space. Secondly, such an adaptation/enhancement should be simple and
should not increase the complexity, and not make the understandability and applicability of the
proposed algorithm more difficult, as is discussed in the paper [33]. In this paper1, therefore, a
simple update is proposed to the SHADE’s original scaling factor and crossover rate adaptation.
This modification rewards exploration capabilities more, and it is analyzed experimentally in
this paper and shown to be more suitable, especially for problems in higher dimensions using
the CEC2015 and CEC2017 benchmarks. The difference between the conference paper [34]
and this presented research is as follows: More dimensional settings and two benchmarks suites
are used, jSO – as the announced winner of the CEC2017 competition [17] is included in all
experiments, and, last but not least, the original population clustering analysis, along with the
population diversity measure, are present, supporting the ideas and obtained data concerning the
prolonged exploration phase of all used and modified algorithms.

The following Section 2 describes the path from DE algorithm to the SHADE, L-SHADE
and jSO, then, distance based parameter adaptation is presented in Section 3. Sections 4 and
5 describe experimental settings and results, respectively. Section 6 provides results discussion
and the paper is concluded in Section 7.

1Part of this paper was presented at SSCI 2017 conference [34].
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2. DE and SHADE

In order to describe the Db SHADE algorithm, it is important to start from the canonical
Differential Evolution (DE) by Storn and Price [1].

The canonical 1995 DE is based on the idea of evolution from a randomly generated set
of solutions of the optimization task called population P, which has a preset size of NP. Each
individual (solution) in the population consists of a vector x of length D (each vector component
corresponds to one attribute of the optimized task) and objective function value f (x), which
mirrors the quality of the solution. The number of optimized attributes D is often referred to as the
dimensionality of the problem, and such generated population P, represents the first generation
of solutions.

The individuals in the population are combined in an evolutionary manner in order to create
improved offspring for the next generation. This process is repeated until the stopping criterion is
met (either the maximum number of generations, or the maximum number of objective function
evaluations, or the population diversity lower limit, or overall computational time), creating a
chain of subsequent generations, where each following generation consists of better solutions
than those in previous generations – a phenomenon called elitism.

The combination of individuals in the population consists of three main steps: Mutation,
crossover, and selection.

In mutation, the attribute vectors of selected individuals are combined in simple vector oper-
ations to produce a mutated vector v. This operation uses a control parameter — scaling factor
F. In the crossover step, a trial vector u is created by selection of attributes either from mutated
vector v or the original vector x, based on the crossover probability given by the control parame-
ter — crossover rate CR, and finally, in the selection, the fitness f (u) of a trial vector is evaluated
by an objective function and compared to the fitness f (x) of the original vector and the better one
is placed into the next generation.

From the basic description of the DE algorithm, it can be seen that there are three control
parameters, which have to be set by the user – population size NP, scaling factor F, and crossover
rate CR. It was shown in [2, 3], that the setting of these parameters is crucial for the performance
of DE. Fine-tuning of the control parameter values is a time-consuming task and, therefore, many
state-of-the-art DE variants use self-adaptation in order to avoid this cumbersome task. This is
also the case of the SHADE algorithm proposed by Tanabe and Fukunaga in 2013 [12] and since
it is used in this paper, the algorithm is described in more detail in the next subsection, along
with the novel distance based parameter adaptation.

2.1. SHADE

As already mentioned, the SHADE algorithm was proposed with a self-adaptive mechanism
of some of its control parameters in order to avoid their fine-tuning. The control parameters
in question are scaling factor F and crossover rate CR. It is fair to mention that the SHADE
algorithm is based on Zhang and Sanderson’s JADE [16] and shares a lot of its mechanisms [11].
The main difference is in the historical memories MF and MCR for successful scaling factor and
crossover rate values with their update mechanism.

The following subsections describe individual steps of the SHADE algorithm: Initialization,
mutation, crossover, selection, and historical memory updates, followed by the algorithm’s im-
portant extension, the linear decrease in population size.
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2.1.1. Initialization
The initial population P is generated randomly and for that matter, a Pseudo-Random Number

Generator (PRNG) is used with uniform distribution is used. Solution vectors x are generated
according to the limits of the solution space – lower and upper bounds:

x j,i = U
[
lower j, upper j

]
;∀ j = 1, . . . , D;∀i = 1, . . . , NP, (1)

where i is the individual index, j is the attribute index, andU uniform random distribution. The
dimensionality of the problem is represented by D, and NP stands for the population size.

Historical memories are preset to contain only 0.5 values for both, scaling factor and crossover
rate parameters:

MCR,i = MF,i = 0.5;∀i = 1, . . . ,H, (2)

where H is a user-defined size of historical memories.
Also, the external archive of inferior solutions A has to be initialized. Because of no previous

inferior solutions, it is initialized empty, A = Ø, and index k for historical memory updates is
initialized to 1.

The following steps are repeated over the generations until the stopping criterion is met.

2.1.2. Mutation
In the original DE mutation step, three mutually different individuals xr1, xr2, xr3 are selected

randomly from the population and combined. This mutation strategy is titled “rand/1”:

vi = xr1 + F (xr2 − xr3) , (3)

where r1 , r2 , r3 , i, F is the scaling factor value and vi is the resulting mutated vector.
On the other hand, SHADE’s mutation strategy “current-to-pbest/1”, introduced in [16], com-

bines four index-wise mutually different vectors in computation of the mutated vector v, with the
index of xpbest being different from r1, r2, and i, as:

vi = xi + Fi

(
xpbest − xi

)
+ Fi (xr1 − xr2) , (4)

where xpbest is a randomly selected individual from the best NP × p individuals in the current
population. The p value is generated randomly for each mutation by PRNG, with uniform dis-
tribution from the range [pmin, 0.2] and pmin = 2/NP. Vector xr1 is selected randomly from the
current population P. Vector xr2 is randomly randomly from the union of the current population
P and external archive A. The scaling factor value Fi is given by:

Fi = C
[
MF,r, 0.1

]
, (5)

where MF,r is a randomly selected value (index r is generated by PRNG from the range 1 to H)
from MF memory, and C stands for Cauchy distribution. Therefore the Fi value is generated
from the Cauchy distribution with location parameter value Mr and scale parameter value of 0.1.
If the generated value Fi is higher than 1, it is truncated to 1, and if Fi is less or equal to 0, it is
generated again by (5).
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2.1.3. Crossover
In the crossover step, trial vector u is created from the mutated v and original x vectors. For

each vector component, a PRNG with uniform distribution is used to generate a random value. If
this random value is less or equal to given crossover rate value CRi, the current vector component
will be taken from a trial vector, otherwise, it will be taken from the original vector (6). There is
also a safety measure, which ensures that at least one vector component will be taken from the
trial vector. This is given by a randomly generated component index jrand:

u j,i =

{
v j,i if U [0, 1] ≤ CRi or j = jrand
x j,i otherwise . (6)

The crossover rate value CRi is generated from a Gaussian distribution with a mean parameter
value MCR,r selected from the crossover rate historical memory MCR by the same index r as in
the scaling factor case and Standard Deviation value of 0.1:

CRi = N
[
MCR,r, 0.1

]
. (7)

When the generated CRi value is less than 0, it is replaced by 0, and when it is greater than 1, it
is replaced by 1.

2.1.4. Selection
The selection step ensures, that the optimization will progress towards better solutions, be-

cause it allows only individuals of better or at least equal objective function value to proceed into
the next generation G+1:

xi,G+1 =

{
ui,G if f

(
ui,G

)
≤ f

(
xi,G

)
xi,G otherwise , (8)

where G is the index of the current generation.

2.1.5. Historical Memory Updates
Historical memories MF and MCR are initialized according to (2), but their components

change during the evolution. These memories serve to hold successful values of F and CR used
in the mutation and crossover steps, successful in terms of producing a trial individual better than
the original individual. During every single generation, these successful values are stored in their
corresponding arrays SF and SCR. After each generation, one cell of MF and MCR memories is
updated. This cell is given by the index k, which starts at 1 and increases by 1 after each gener-
ation. When it overflows the memory size H, it is reset to 1. The new values of the k-th cell for
MF and MCR are calculated, respectively:

MF,k =

{
meanWL (SF) if SF , ∅

MF,k otherwise , (9)

MCR,k =

{
meanWL (SCR) if SCR , ∅

MCR,k otherwise , (10)

where meanWL() stands for weighted Lehmer mean:

meanWL (S) =

∑|S|
k=1 wk • S 2

k∑|S|
k=1 wk • S k

(11)
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and the weight vector w is based on the improvement in objective function value between trial
and original individuals in current generation G, as follows:

wk =
abs

(
f
(
uk,G

)
− f

(
xk,G

))∑|SCR |

m=1 abs
(
f
(
um,G

)
− f

(
xm,G

)) . (12)

Because both arrays SF and SCR have the same size, it is arbitrary which size will be used for the
upper boundary for m in Eq. (12).

The pseudo-codes for both algorithms are shown as Algorithm 1 and Algorithm 2 for DE and
SHADE algorithms, respectively.

Algorithm 1 DE
1: Set NP, CR, F, and stopping criterion;
2: G = 0, xbest = {};
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Pnew = {}, xbest = best from population P;
5: while stopping criterion not met do
6: for i = 1 to NP do
7: xi,G = P[i];
8: vi,G by mutation (3);
9: ui,G by crossover (6);

10: if f (ui,G) < f (xi,G) then
11: xi,G+1 = ui,G;
12: else
13: xi,G+1 = xi,G;
14: end if
15: xi,G+1 → Pnew;
16: end for
17: P = Pnew, Pnew = {}, xbest = best from population P, G++;
18: end while
19: return xbest as the best found solution;

2.2. Linear Decrease in Population Size
Linear decrease in population size was introduced to SHADE in [14] to improve its perfor-

mance. The basic idea is to reduce the population size to promote exploitation in later phases
of the evolution. Therefore, a new formula to estimate the population size was formed (13) and
a new population size is calculated after each generation. Whenever the new population size
NPnew is smaller than the current population size NP, the population is sorted according to the
objective function value, and the worst NP – NPnew individuals are discarded. The size of the
external archive is reduced as well, using the formula:

NPnew = round
(
NPinit −

FES
MAXFES

∗ (NPinit − NPf)
)
, (13)

where NPinit is the initial population size and NPf is the end population size. FES and MAXFES
are objective function number evaluations and a maximum number of objective function evalua-
tions, respectively.
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Algorithm 2 SHADE
1: Set NP, H, and stopping criterion;
2: G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Set MF and MCR according to (2);
5: Pnew = {}, xbest = best from population P;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: r =U[1, H];

10: Set Fi by (5) and CRi by (7);
11: xi,G = P[i], pi =U[pmin, 0.2];
12: vi,G by mutation (4);
13: ui,G by crossover (6);
14: if f (ui,G) < f (xi,G) then
15: xi,G+1 = ui,G;
16: xi,G → A;
17: Fi → SF , CRi → SCR;
18: else
19: xi,G+1 = xi,G;
20: end if
21: if |A|>NP then
22: Randomly delete an individual from A;
23: end if
24: xi,G+1 → Pnew;
25: end for
26: if SF , Ø and SCR , Ø then
27: Update MF,k (9) and MCR,k (10) with Lehmer mean computed by (11) with objective

function value improvement based weights from (12), k++;
28: if k > H then
29: k = 1;
30: end if
31: end if
32: P = Pnew, Pnew = {}, xbest = best from population P, G++;
33: end while
34: return xbest as the best found solution;
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2.3. Weighted Mutation Strategy with Parameterization Enhancements: jSO

The jSO algorithm [17] was announced winner at the CEC 2017 Competition on single ob-
jective real-parameter optimization [35], and introduces to L-SHADE mainly a new weighted
version of mutation strategy after using, iL-SHADE [36] updates of L-SHADE. The iL-SHADE
extends L-SHADE by initializing all values in MF and MCR at 0.8, additional historical memory
entry MF,H = MCR,H = 0.9 with weighted Lehmer means to calculate historical memory values,
limiting F and CR values in early stages, and computing p for pBest mutation strategy as:

p = pmin +
FES

MAXFES
(pmax − pmin). (14)

The jSO algorithm sets p value limits at pmax = 0.25 and pmin = pmax/2, initial population size at
NPinit = 25

√
D log D, historical memory size H = 5, initializes values of MF at 0.3, and proposes

the weighted version mutation strategy current-to-pBest-w/1 for the i-th vector:

vi = xi + Fw(xpBest − xi) + F(xr1 − xr2), (15)

where Fw is calculated as:

Fw =


0.7F, FES < 0.2MAXFES ,
0.8F, FES < 0.4MAXFES ,
1.2F, otherwise.

(16)

3. Distance Based Parameter Adaptation

The original adaptation mechanism for scaling factor and crossover rate values uses weighted
forms of means (11), where weights are based on the improvement in the objective function
value (12). This approach promotes exploitation over exploration and, therefore, might lead to
premature convergence, which could be a problem, especially in higher dimensions.

The idea behind the proposed approach is quite simple. Either to improve the exploration
ability of the algorithm or to maintain it for a more extended period, it is necessary to force
the individuals to explore the search space more intensively and to keep the population diversity
higher. By doing that through any adaptation, it would be beneficial to find such a parameter
setting that forces the individuals to the desired behavior.

The distance approach is based on the Euclidean distance between the trial and the original
individual (17). This increases the complexity of the weight computation slightly by exchanging
simple difference for Euclidean distance, nevertheless, the overall experimental complexity of
the algorithm is similar (even lower), as given in Tables 21, 22, and 23. The explanation behind
the similar complexity of the proposed method is that, in the original weight calculation (12), the
differences between objective function values can reach high numerical values, especially in a
high dimensional search space. Therefore, the division operation in (12) may take longer time to
evaluate, whereas the presented approach (17) with Euclidean distances only considers the indi-
viduals’ positions within the range of search space (in the case of CEC benchmarks [−100, 100]),
thus, the numerical range of division operation in weight calculation (17) is substantially lower.

In this modification, scaling factor and crossover rate values connected with the individual
that moved the furthest will have the highest weight:
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wk =

√∑D
j=1

(
uk, j,G − xk, j,G

)2

∑|SCR |

m=1

√∑D
j=1

(
um, j,G − xm, j,G

)2
. (17)

Therefore, the exploration ability is rewarded, and this should lead to avoidance of the pre-
mature convergence in higher dimensional objective spaces.

The pseudo-code of the Db SHADE algorithm (extending the SHADE algorithm) is seen as
Algorithm 3; for a clear overview, the pseudo-code of the DbL SHADE algorithm (extending
the L-SHADE algorithm) is depicted as Algorithm 4, and the algorithm DISH (extending algo-
rithm jSO) is depicted as Algorithm 5. The modifications in the proposed algorithms from their
respective originals are underlined: line 27 in DB SHADE, line 35 in DbL SHADE, and line
54 in DISH, which implement the proposed distance based parameter adaptation mechanism for
these three new algorithms. The acronym DISH denotes the proposed best performing ”DIstance
Based Parameter Adaptation for Succes-History based Differential Evolution”, as demonstrated
experimentally in the next section.

4. Experimental Setting

In order to test the proposed modification experimentally, it was implemented into three al-
gorithms – SHADE (as Db SHADE), L-SHADE (as DbL-SHADE), and jSO (as DISH). These
algorithms were run according to the Problem Definitions and Evaluation Criteria for the CEC
2015 Competition on a Learning-based Real-Parameter Single Objective Optimization (CEC2015)
benchmark set in 10, 30, 50 and 100 dimensions [37]. According to the benchmark rules, the
stopping criterion was set to 10,000 × D objective function evaluations, and 51 independent runs
were performed. SHADE’s historical memory size H was set to 10, external archive size A was
set to NP, and the population size NP was set to 100 [12]. L-SHADE’s historical memory size
H was set to 6, external archive A size was set to NP, and starting population size NPinit was set
to 18D, and the final population size NPf was set to 4, according to [14]. The jSO’s historical
memory size H was set to 5, external archive A size was set to NP, and starting population size
NPinit was set to 25log D,

√
D and the final population size NPf was set to 4 [17].

Based on the obtained results for the CEC2015 benchmark set, the most up-to-date SHADE
version – jSO was also tested on the CEC2017 benchmark set [35]. Namely, the CEC2015
benchmark set uses a different mathematical formulation of an algorithm for each function (pa-
rameters are different, i.e. it is a one function algorithm), whereas CEC2017 uses one algorithm
for more functions (whole domain benchmark) [38].

The stated prolonged exploration phase of the distance based parameter adaptation was a
subject to study. The population clustering was recorded for each generation, each function in the
benchmark, each algorithm and each dimensionality. Also a population diversity was recorded
in a similar manner. Both analyses are described in more detail in the following subsections.

4.1. Cluster Analysis
The clustering algorithm selected for this experiment was Density Based Spatial Clustering

of Applications with Noise (DBSCAN) [39], which conveniently works on the basis of cluster
density, rather than its centre, and, therefore, is able to discover clusters of arbitrary shapes.

The DBSCAN algorithm requires setting of two control parameters and a distance measure.
These were set as follows:
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Algorithm 3 Db SHADE
1: Set NP, H, and stopping criterion;
2: G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Set MF and MCR according to (2);
5: Pnew = {}, xbest = best from population P;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: r =U[1, H];

10: Set Fi by (5) and CRi by (7);
11: xi,G = P[i], pi =U[pmin, 0.2];
12: vi,G by mutation (4);
13: ui,G by crossover (6);
14: if f (ui,G) < f (xi,G) then
15: xi,G+1 = ui,G;
16: xi,G → A;
17: Fi → SF , CRi → SCR;
18: else
19: xi,G+1 = xi,G;
20: end if
21: if |A|>NP then
22: Randomly delete |A|–NP individuals from A;
23: end if
24: xi,G+1 → Pnew;
25: end for
26: if SF , Ø and SCR , Ø then
27: Update MF,k (9) and MCR,k (10) with Lehmer mean computed by (11) with distance

based weights from (17), k++;
28: if k > H then
29: k = 1;
30: end if
31: end if
32: P = Pnew, Pnew = {}, xbest = best from population P, G++;
33: end while
34: return xbest as the best found solution;
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Algorithm 4 DbL SHADE
1: Set NPinit, NPf, H, and stopping criterion;
2: NP = NPinit, G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Set MF and MCR according to (2);
5: Pnew = {}, xbest = best from population P;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: r =U[1, H];

10: Set Fi by (5) and CRi by (7);
11: xi,G = P[i], pi =U[pmin, 0.2];
12: vi,G by mutation (4);
13: ui,G by crossover (6);
14: if f (ui,G) < f (xi,G) then
15: xi,G+1 = ui,G;
16: xi,G → A;
17: Fi → SF , CRi → SCR;
18: else
19: xi,G+1 = xi,G;
20: end if
21: if |A|>NP then
22: Randomly delete |A|–NP individuals from A;
23: end if
24: xi,G+1 → Pnew;
25: end for
26: Calculate NPnew according to (13);
27: if NPnew < NP then
28: Sort individuals in P according to their objective function values and remove NP –

NPnew worst ones;
29: NP = NPnew;
30: end if
31: if |A|>NP then
32: Randomly delete |A|–NP individuals from A;
33: end if
34: if SF , Ø and SCR , Ø then
35: Update Update MF,k (9) and MCR,k (10) with Lehmer mean computed by (11) with

distance based weights from (17), k++;
36: if k > H then
37: k = 1;
38: end if
39: end if
40: P = Pnew, Pnew = {}, xbest = best from population P, G++;
41: end while
42: return xbest as the best found solution;
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Algorithm 5 DISH

1: Set NPinit, NPf, H, and stopping criterion;
2: NP = NPinit, G = 0, xbest = {}, k = 1, pmin =

2/NP, A = Ø;
3: Randomly initialize (1) population P =

(x1,G,. . . ,xNP,G);
4: Set all values in MF to 0.5 and MCR to 0.8;
5: Pnew = {}, xbest = best from population P;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: r =U[1, H];

10: if r = H then
11: MF,r = 0.9;
12: MCR,r = 0.9;
13: end if
14: if MCR,r < 0 then
15: CRi,G = 0;
16: else
17: CRi,G = N(MCR,r, 0.1);
18: end if
19: Set Fi by (5);
20: if G < 0.6GMAX and Fi,G > 0.7 then
21: Fi,G = 0.7;
22: end if
23: if G < 0.25GMAX then
24: CRi,G = max(CRi,G, 0.7);
25: else if G < 0.5GMAX then
26: CRi,G = max(CRi,G, 0.6);
27: end if
28: xi,G = P[i], pi = U[pmin, 0.2];
29: vi,G by mutation (15);
30: ui,G by crossover (6);
31: if f (ui,G) ≤ f (xi,G) then
32: xi,G+1 = ui,G;
33: else
34: xi,G+1 = xi,G;

35: end if
36: if f (ui,G) < f (xi,G) then
37: xi,G → A;
38: Fi → SF , CRi → SCR;
39: end if
40: if |A|>NP then
41: Randomly delete |A|–NP individu-

als from A;
42: end if
43: xi,G+1 → Pnew;
44: end for
45: Calculate NPnew according to (13);
46: if NPnew < NP then
47: Sort individuals in P according to

their objective function values and re-
move NP – NPnew worst ones;

48: NP = NPnew;
49: end if
50: if |A|>NP then
51: Randomly delete |A|–NP individuals

from A;
52: end if
53: if SF , Ø and SCR , Ø then
54: Update Update MF,k (9) and MCR,k

(10) with Lehmer mean computed
by (11) with distance based weights
from (17), k++;

55: if k > H then
56: k = 1;
57: end if
58: end if
59: P = Pnew, Pnew = {}, xbest = best from

population P, G++;
60: end while
61: return xbest as the best found solution;
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1. Core point distance Eps = 1% of the decision space – for the CEC2015 benchmark set Eps
= 2,

2. Minimal number of points to form a cluster MinPts = 4 (minimal number of individuals
for mutation),

3. Distance measure equal to Chebyshev distance [40] – if the distance between any corre-
sponding attributes of two individuals is higher than 1% of the decision space, they are not
considered directly density-reachable.

4.2. Population Diversity

The used Population Diversity (PD) measure was taken from [41], and is based on the square
root of the sum of deviations, Eq. (19), of individual’s components from their corresponding
means, Eq. (18):

x j =
1

NP

NP∑
i=1

x j,i, (18)

PD =

√√√
1

NP

NP∑
i=1

D∑
j=1

(
x j,i − x j

)2
, (19)

where i is the population member iterator and j is the component (dimension) iterator.

5. Results

In this section, several Tables with results are provided, where there are comparisons of
reached objective function values between the original algorithm (SHADE, L-SHADE, or jSO)
and its modified version with distance based adaptation (Db SHADE, DbL SHADE, or DISH,
respectively). In the last column of each Table, there is a result of a Wilcoxon rank-sum test with
significance level α set to 0.05. When the original version performs significantly better, the “-”
sign is used, when the modified version performs significantly better, the “+” sign is used, and
when the performance is equal, the “=” sign is used. All Tables provide median and mean values
of the 51 runs.

Convergence graphs are given in Figures 1–9. Figures 1–3 depict the difference in conver-
gence between the SHADE and Db SHADE algorithms in 30D, 50D, and 100D correspondingly,
Figures 4–6 depict the difference in convergence between the L-SHADE and DbL SHADE al-
gorithms in 30D, 50D, and 100D correspondingly and Figures 7–9. It is apparent, that the blue
line of distance based version of the algorithms is often slower in convergence, but able to reach
better objective function values.

Results in Tables 17–19 present the number of runs where clustering of the population oc-
curred (#runs), mean generation of the first cluster occurrence during those runs (Mean CO), and
the mean population diversity in those generations (Mean PD).

Using median values from the results comparison Tables, the Friedman ranking [42] of the
algorithms using aggregated functions sets is shown in Tables 24–28, and their post-hoc proce-
dures analysis in Tables 29–33.
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Table 1: SHADE vs. Db SHADE on CEC2015 in 10D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 1.89E+01 2.00E+01 1.92E+01 =

4 3.07E+00 2.97E+00 3.06E+00 2.98E+00 =

5 2.21E+01 3.42E+01 2.98E+01 4.52E+01 =

6 2.20E-01 2.97E+00 4.16E-01 8.08E-01 =

7 1.67E-01 1.88E-01 1.73E-01 1.91E-01 =

8 8.15E-02 2.69E-01 4.28E-02 2.06E-01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 2.17E+02 2.17E+02 2.17E+02 2.17E+02 =

11 3.00E+02 1.66E+02 3.00E+02 2.01E+02 =

12 1.01E+02 1.01E+02 1.01E+02 1.01E+02 =

13 2.78E+01 2.78E+01 2.79E+01 2.76E+01 =

14 2.94E+03 4.28E+03 2.98E+03 4.66E+03 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 2: SHADE vs. Db SHADE on CEC2015 in 30D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 3.73E+01 2.62E+02 2.12E+01 2.42E+02 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.01E+01 2.01E+01 2.01E+01 2.01E+01 =

4 1.41E+01 1.41E+01 1.32E+01 1.31E+01 =

5 1.55E+03 1.50E+03 1.54E+03 1.52E+03 =

6 5.36E+02 5.73E+02 3.37E+02 3.48E+02 +

7 7.17E+00 7.26E+00 6.81E+00 6.74E+00 +

8 1.26E+02 1.21E+02 5.27E+01 7.38E+01 +

9 1.03E+02 1.03E+02 1.03E+02 1.03E+02 =

10 6.27E+02 6.22E+02 5.29E+02 5.32E+02 +

11 4.53E+02 4.50E+02 4.10E+02 4.16E+02 +

12 1.05E+02 1.05E+02 1.05E+02 1.05E+02 =

13 9.52E+01 9.50E+01 9.47E+01 9.50E+01 =

14 3.21E+04 3.24E+04 3.22E+04 3.24E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
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Table 3: SHADE vs. Db SHADE on CEC2015 in 50D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 1.81E+04 2.14E+04 3.00E+04 3.27E+04 -
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.01E+01 2.01E+01 2.02E+01 2.02E+01 -
4 3.84E+01 3.92E+01 3.15E+01 3.27E+01 +

5 3.10E+03 3.09E+03 3.06E+03 3.01E+03 =

6 2.87E+03 3.56E+03 2.87E+03 3.91E+03 =

7 4.22E+01 4.25E+01 4.08E+01 4.12E+01 +

8 1.13E+03 1.12E+03 6.62E+02 6.68E+02 +

9 1.06E+02 1.06E+02 1.05E+02 1.05E+02 +

10 1.57E+03 1.59E+03 1.23E+03 1.24E+03 +

11 6.76E+02 6.81E+02 5.83E+02 5.85E+02 +

12 1.08E+02 1.08E+02 1.08E+02 1.08E+02 =

13 1.80E+02 1.80E+02 1.81E+02 1.80E+02 =

14 7.29E+04 6.66E+04 6.96E+04 6.51E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 4: SHADE vs. Db SHADE on CEC2015 in 100D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 2.00E+05 2.20E+05 2.00E+05 2.10E+05 =

2 7.80E-07 7.70E-03 7.00E-10 1.60E-08 +

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 -
4 1.60E+02 1.60E+02 1.30E+02 1.30E+02 +

5 9.60E+03 9.60E+03 9.40E+03 9.40E+03 =

6 3.50E+04 4.00E+04 3.50E+04 3.80E+04 =

7 1.20E+02 1.30E+02 1.40E+02 1.20E+02 =

8 1.30E+04 1.40E+04 1.10E+04 1.10E+04 =

9 1.10E+02 1.10E+02 1.10E+02 1.10E+02 +

10 4.20E+03 4.20E+03 4.00E+03 4.00E+03 =

11 1.90E+03 1.90E+03 1.70E+03 1.70E+03 +

12 1.20E+02 1.20E+02 1.20E+02 1.20E+02 =

13 3.90E+02 3.90E+02 3.90E+02 3.90E+02 =

14 1.10E+05 1.10E+05 1.10E+05 1.10E+05 =

15 1.10E+02 1.10E+02 1.00E+02 1.00E+02 +
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Table 5: L-SHADE vs. DbL SHADE on CEC2015 in 10D.

L-SHADE DbL SHADE
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 1.87E+01 2.00E+01 1.89E+01 =

4 2.98E+00 2.58E+00 2.99E+00 2.95E+00 =

5 2.87E+01 6.05E+01 1.54E+01 4.23E+01 =

6 4.16E-01 2.84E+00 6.24E-01 7.74E-01 -
7 7.01E-02 1.31E-01 9.49E-02 1.89E-01 =

8 4.21E-01 4.13E-01 3.29E-01 3.44E-01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 2.17E+02 2.17E+02 2.17E+02 2.17E+02 =

11 3.00E+02 1.83E+02 3.00E+02 1.95E+02 =

12 1.01E+02 1.01E+02 1.01E+02 1.01E+02 +

13 2.71E+01 2.66E+01 2.69E+01 2.69E+01 =

14 2.94E+03 4.19E+03 2.94E+03 4.77E+03 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 6: L-SHADE vs. DbL SHADE on CEC2015 in 30D.

L-SHADE DbL SHADE
f Median Mean Median Mean Result
1 1.60E+00 6.18E+00 3.86E+00 2.00E+01 -
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 =

4 1.29E+01 1.39E+01 1.29E+01 1.29E+01 =

5 1.44E+03 1.39E+03 1.40E+03 1.41E+03 =

6 7.61E+02 7.71E+02 4.64E+02 4.74E+02 +

7 6.70E+00 6.48E+00 5.91E+00 5.62E+00 +

8 1.51E+02 1.47E+02 1.21E+02 1.14E+02 +

9 1.03E+02 1.03E+02 1.03E+02 1.03E+02 =

10 7.21E+02 7.75E+02 5.99E+02 5.85E+02 +

11 4.77E+02 4.68E+02 4.21E+02 4.33E+02 +

12 1.05E+02 1.05E+02 1.05E+02 1.05E+02 =

13 9.29E+01 9.24E+01 9.32E+01 9.25E+01 =

14 3.33E+04 3.29E+04 3.31E+04 3.25E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
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Table 7: L-SHADE vs. DbL SHADE on CEC2015 in 50D.

L-SHADE DbL SHADE
f Median Mean Median Mean Result
1 4.37E+03 6.31E+03 1.17E+04 1.50E+04 -
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 =

4 3.68E+01 3.62E+01 3.09E+01 3.12E+01 +

5 3.07E+03 3.06E+03 2.93E+03 2.90E+03 +

6 2.74E+03 2.75E+03 2.48E+03 2.85E+03 =

7 4.29E+01 4.33E+01 4.20E+01 4.21E+01 +

8 1.15E+03 1.11E+03 8.25E+02 8.28E+02 +

9 1.06E+02 1.06E+02 1.05E+02 1.05E+02 +

10 1.60E+03 1.65E+03 1.41E+03 1.46E+03 +

11 6.93E+02 6.89E+02 5.98E+02 5.97E+02 +

12 1.08E+02 1.08E+02 1.08E+02 1.08E+02 +

13 1.78E+02 1.78E+02 1.79E+02 1.78E+02 =

14 7.30E+04 6.70E+04 5.92E+04 6.37E+04 +

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 8: L-SHADE vs. DbL SHADE on CEC2015 in 100D.

L-SHADE DbL SHADE
f Median Mean Median Mean Result
1 9.10E+04 1.10E+05 1.40E+05 1.60E+05 -
2 1.20E-09 3.80E-09 2.90E-09 7.90E-09 =

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 =

4 1.50E+02 1.50E+02 1.30E+02 1.30E+02 +

5 9.50E+03 9.50E+03 9.20E+03 9.30E+03 +

6 2.80E+04 3.10E+04 3.30E+04 3.50E+04 -
7 1.10E+02 1.10E+02 1.10E+02 1.10E+02 +

8 8.90E+03 9.80E+03 1.00E+04 1.10E+04 =

9 1.10E+02 1.10E+02 1.10E+02 1.10E+02 +

10 4.50E+03 4.50E+03 4.30E+03 4.30E+03 =

11 1.90E+03 1.90E+03 1.70E+03 1.70E+03 +

12 1.20E+02 1.20E+02 1.20E+02 1.20E+02 =

13 3.90E+02 3.80E+02 3.90E+02 3.90E+02 =

14 1.10E+05 1.10E+05 1.10E+05 1.10E+05 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 +
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Table 9: jSO vs. DISH on CEC2015 in 10D.

jSO DISH
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 =

4 2.00E+00 2.20E+00 2.00E+00 2.10E+00 =

5 1.00E+01 3.20E+01 1.50E+01 4.00E+01 =

6 2.00E+00 3.20E+00 1.40E+00 2.50E+00 =

7 2.90E-02 7.30E-02 2.90E-02 7.50E-02 =

8 4.00E-01 4.20E-01 5.00E-01 5.10E-01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 2.20E+02 2.20E+02 2.20E+02 2.20E+02 =

11 3.00E+02 1.70E+02 3.00E+02 2.10E+02 =

12 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

13 2.80E+01 2.80E+01 2.70E+01 2.70E+01 =

14 2.90E+03 4.70E+03 2.90E+03 4.20E+03 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 10: jSO vs. DISH on CEC2015 in 30D.

jSO DISH
f Median Mean Median Mean Result
1 8.80E-02 4.30E-01 7.20E-02 6.70E-01 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.10E+01 2.10E+01 2.10E+01 2.10E+01 =

4 1.40E+01 1.40E+01 1.40E+01 1.40E+01 =

5 1.50E+03 1.50E+03 1.60E+03 1.50E+03 =

6 2.30E+02 2.90E+02 1.80E+02 2.10E+02 +

7 2.80E+00 2.90E+00 2.60E+00 2.80E+00 =

8 5.10E+01 6.20E+01 3.60E+01 6.30E+01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 +

10 5.00E+02 5.00E+02 4.70E+02 4.70E+02 =

11 4.40E+02 4.40E+02 4.00E+02 4.20E+02 +

12 1.10E+02 1.10E+02 1.10E+02 1.00E+02 =

13 9.40E+01 9.40E+01 9.50E+01 9.50E+01 =

14 3.10E+04 3.20E+04 3.10E+04 3.20E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
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Table 11: jSO vs. DISH on CEC2015 in 50D.

jSO DISH
f Median Mean Median Mean Result
1 7.70E+03 8.80E+03 8.70E+03 1.00E+04 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.10E+01 2.10E+01 2.00E+01 2.10E+01 =

4 4.10E+01 4.00E+01 3.40E+01 3.40E+01 +

5 3.30E+03 3.20E+03 3.30E+03 3.20E+03 =

6 2.00E+03 2.10E+03 1.80E+03 1.80E+03 +

7 4.10E+01 4.10E+01 4.10E+01 4.10E+01 =

8 6.20E+02 6.20E+02 5.00E+02 5.10E+02 +

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 1.20E+03 1.10E+03 1.10E+03 1.10E+03 +

11 5.10E+02 5.10E+02 4.70E+02 4.80E+02 +

12 1.10E+02 1.10E+02 1.10E+02 1.10E+02 +

13 1.80E+02 1.80E+02 1.80E+02 1.80E+02 +

14 5.90E+04 6.00E+04 5.90E+04 6.20E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 12: jSO vs. DISH on CEC2015 in 100D.

jSO DISH
f Median Mean Median Mean Result
1 9.10E+04 1.10E+05 1.30E+05 1.40E+05 -
2 5.00E-10 3.30E-09 7.00E-10 3.80E-09 =

3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 =

4 1.80E+02 1.80E+02 1.50E+02 1.50E+02 +

5 10.00E+03 10.00E+03 1.00E+04 10.00E+03 =

6 2.50E+04 2.80E+04 3.20E+04 3.30E+04 -
7 1.10E+02 1.10E+02 1.00E+02 1.10E+02 =

8 7.50E+03 8.10E+03 7.20E+03 7.70E+03 =

9 1.10E+02 1.10E+02 1.10E+02 1.10E+02 +

10 3.90E+03 3.90E+03 3.70E+03 3.80E+03 =

11 1.40E+03 1.40E+03 1.20E+03 1.20E+03 +

12 1.20E+02 1.20E+02 1.20E+02 1.20E+02 +

13 4.00E+02 4.00E+02 4.00E+02 4.00E+02 =

14 1.10E+05 1.10E+05 1.10E+05 1.10E+05 +

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 +
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Table 13: jSO vs. DISH on CEC2017 in 10D.

jSO DISH
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

5 2.00E+00 1.80E+00 2.00E+00 1.80E+00 =

6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

7 1.20E+01 1.20E+01 1.20E+01 1.20E+01 =

8 2.00E+00 2.00E+00 2.00E+00 2.00E+00 =

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

10 1.00E+01 3.60E+01 7.00E+00 4.40E+01 =

11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

12 4.20E-01 2.70E+00 4.20E-01 3.30E-01 =

13 4.80E+00 3.00E+00 10.00E-01 2.10E+00 =

14 0.00E+00 5.90E-02 0.00E+00 1.20E-01 =

15 1.80E-01 2.20E-01 4.50E-01 3.10E-01 -
16 5.20E-01 5.70E-01 6.30E-01 5.60E-01 =

17 4.00E-01 5.00E-01 3.90E-01 4.40E-01 =

18 3.80E-01 3.10E-01 2.70E-01 2.70E-01 =

19 0.00E+00 1.10E-02 0.00E+00 9.20E-03 =

20 3.10E-01 3.40E-01 3.10E-01 3.40E-01 =

21 1.00E+02 1.30E+02 1.00E+02 1.40E+02 =

22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

23 3.00E+02 3.00E+02 3.00E+02 3.00E+02 =

24 3.30E+02 3.00E+02 3.30E+02 2.90E+02 =

25 4.00E+02 4.10E+02 4.00E+02 4.10E+02 =

26 3.00E+02 3.00E+02 3.00E+02 3.00E+02 =

27 3.90E+02 3.90E+02 3.90E+02 3.90E+02 =

28 3.00E+02 3.40E+02 3.00E+02 3.70E+02 =

29 2.30E+02 2.30E+02 2.40E+02 2.40E+02 =

30 4.00E+02 4.00E+02 4.00E+02 4.00E+02 =

Figure 1: Comparison of selected average convergence between the SHADE and Db SHADE algorithms on CEC2015
in 30D. From left f 6, f 8 and f 11.
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Table 14: jSO vs. DISH on CEC2017 in 30D.

jSO DISH
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

4 5.90E+01 5.90E+01 5.90E+01 5.90E+01 =

5 8.00E+00 8.60E+00 8.00E+00 8.20E+00 =

6 0.00E+00 6.00E-09 0.00E+00 1.30E-08 =

7 3.90E+01 3.90E+01 3.80E+01 3.80E+01 =

8 9.00E+00 9.10E+00 8.00E+00 8.40E+00 =

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

10 1.50E+03 1.50E+03 1.50E+03 1.50E+03 =

11 2.00E+00 3.00E+00 2.00E+00 3.80E+00 =

12 1.40E+02 1.70E+02 1.20E+02 9.40E+01 +

13 1.60E+01 1.50E+01 1.70E+01 1.50E+01 =

14 2.10E+01 2.20E+01 2.20E+01 2.20E+01 =

15 7.80E-01 1.10E+00 9.10E-01 1.10E+00 =

16 2.60E+01 7.90E+01 2.50E+01 8.00E+01 =

17 3.50E+01 3.30E+01 3.50E+01 3.40E+01 =

18 2.10E+01 2.00E+01 2.10E+01 2.00E+01 =

19 4.10E+00 4.50E+00 3.50E+00 4.20E+00 =

20 2.90E+01 2.90E+01 2.80E+01 2.80E+01 =

21 2.10E+02 2.10E+02 2.10E+02 2.10E+02 =

22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

23 3.50E+02 3.50E+02 3.50E+02 3.50E+02 =

24 4.30E+02 4.30E+02 4.30E+02 4.30E+02 =

25 3.90E+02 3.90E+02 3.90E+02 3.90E+02 +

26 9.30E+02 9.20E+02 9.30E+02 9.40E+02 -
27 5.00E+02 5.00E+02 4.90E+02 4.90E+02 +

28 3.00E+02 3.10E+02 3.00E+02 3.00E+02 =

29 4.30E+02 4.30E+02 4.40E+02 4.30E+02 =

30 2.00E+03 2.00E+03 2.00E+03 2.00E+03 =

Figure 2: Comparison of selected average convergence between the SHADE and Db SHADE algorithms on CEC2015
in 50D. From left f 4, f 8 and f 11.
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Table 15: jSO vs. DISH on CEC2017 in 50D.

jSO DISH
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

4 2.90E+01 5.60E+01 2.90E+01 6.10E+01 =

5 1.60E+01 1.60E+01 1.40E+01 1.40E+01 +

6 3.10E-07 1.10E-06 4.80E-08 9.70E-08 +

7 6.70E+01 6.70E+01 6.40E+01 6.40E+01 +

8 1.70E+01 1.70E+01 1.30E+01 1.40E+01 +

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

10 3.20E+03 3.10E+03 3.30E+03 3.20E+03 =

11 2.90E+01 2.80E+01 2.30E+01 2.40E+01 +

12 1.70E+03 1.70E+03 1.20E+03 1.20E+03 +

13 3.70E+01 3.10E+01 1.60E+01 2.70E+01 =

14 2.40E+01 2.50E+01 2.40E+01 2.40E+01 =

15 2.30E+01 2.40E+01 2.00E+01 2.10E+01 +

16 4.80E+02 4.50E+02 4.70E+02 4.50E+02 =

17 2.60E+02 2.80E+02 2.90E+02 3.00E+02 =

18 2.40E+01 2.40E+01 2.20E+01 2.30E+01 +

19 1.40E+01 1.40E+01 1.10E+01 1.10E+01 +

20 1.10E+02 1.40E+02 1.10E+02 1.60E+02 =

21 2.20E+02 2.20E+02 2.20E+02 2.20E+02 +

22 1.00E+02 1.50E+03 1.00E+02 1.80E+03 =

23 4.30E+02 4.30E+02 4.30E+02 4.30E+02 +

24 5.10E+02 5.10E+02 5.10E+02 5.10E+02 =

25 4.80E+02 4.80E+02 4.80E+02 4.80E+02 +

26 1.10E+03 1.10E+03 1.10E+03 1.10E+03 =

27 5.10E+02 5.10E+02 5.10E+02 5.10E+02 +

28 4.60E+02 4.60E+02 4.60E+02 4.60E+02 =

29 3.60E+02 3.60E+02 3.60E+02 3.60E+02 +

30 5.90E+05 6.00E+05 5.90E+05 6.00E+05 =

Figure 3: Comparison of selected average convergence between the SHADE and Db SHADE algorithms on CEC2015
in 100D. From f 2, f 4 and f 11.
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Table 16: jSO vs. DISH on CEC2017 in 100D.

jSO DISH
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 8.20E-10 =

2 4.70E-07 8.90E+00 2.90E-07 1.00E+04 =

3 1.50E-06 2.40E-06 1.10E-05 1.60E-05 -
4 2.00E+02 1.90E+02 2.00E+02 2.00E+02 =

5 4.40E+01 4.40E+01 2.80E+01 2.80E+01 +

6 3.60E-05 2.00E-04 4.30E-06 5.70E-06 +

7 1.40E+02 1.50E+02 1.30E+02 1.30E+02 +

8 4.20E+01 4.20E+01 2.90E+01 2.90E+01 +

9 0.00E+00 4.60E-02 0.00E+00 3.50E-03 +

10 9.80E+03 9.70E+03 9.80E+03 9.80E+03 =

11 1.00E+02 1.10E+02 5.20E+01 5.80E+01 +

12 1.70E+04 1.80E+04 1.10E+04 1.20E+04 +

13 1.40E+02 1.50E+02 1.10E+02 1.20E+02 +

14 6.40E+01 6.40E+01 4.00E+01 4.00E+01 +

15 1.70E+02 1.60E+02 7.80E+01 8.90E+01 +

16 1.90E+03 1.90E+03 1.90E+03 1.80E+03 =

17 1.30E+03 1.30E+03 1.30E+03 1.30E+03 =

18 1.60E+02 1.70E+02 9.50E+01 9.90E+01 +

19 1.10E+02 1.10E+02 5.20E+01 5.30E+01 +

20 1.40E+03 1.40E+03 1.50E+03 1.40E+03 =

21 2.60E+02 2.60E+02 2.50E+02 2.50E+02 +

22 1.10E+04 1.00E+04 1.10E+04 1.10E+04 =

23 5.70E+02 5.70E+02 5.70E+02 5.70E+02 +

24 9.00E+02 9.00E+02 8.90E+02 8.90E+02 +

25 7.60E+02 7.40E+02 7.10E+02 7.20E+02 +

26 3.30E+03 3.30E+03 3.10E+03 3.10E+03 +

27 5.90E+02 5.90E+02 5.70E+02 5.70E+02 +

28 5.20E+02 5.30E+02 5.20E+02 5.20E+02 =

29 1.20E+03 1.30E+03 1.30E+03 1.30E+03 =

30 2.30E+03 2.30E+03 2.30E+03 2.30E+03 +

Figure 4: Comparison of selected average convergence between the L-SHADE and DbL SHADE algorithms on
CEC2015 in 30D. From left f 6, f 7 and f 8.

23



Figure 5: Comparison of selected average convergence between the L-SHADE and DbL SHADE algorithms on
CEC2015 in 50D. From left f 4, f 5 and f 11.

Figure 6: Comparison of selected average convergence between the L-SHADE and DbL SHADE algorithms on
CEC2015 in 100D. From left f 4, f 5 and f 11.

Figure 7: Comparison of selected average convergence between the jSO and DISH algorithms on CEC2015 in 30D.
From left f 3, f 6 and f 11.

Figure 8: Comparison of selected average convergence between the jSO and DISH algorithms on CEC2015 in 50D.
From left f 4, f 8 and f 11.
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Figure 9: Comparison of selected average convergence between the jSO and DISH algorithms on CEC2015 in 100D.
From left f 4, f 8 and f 11.

Table 17: Clustering and population diversity on the CEC2015 in 10D.

SHADE Db SHADE L-SHADE DbL SHADE jSO DISH
f #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD
1 51 1.01E+02 1.44E+01 51 1.16E+02 1.50E+01 51 1.02E+02 1.34E+01 51 1.23E+02 1.46E+01 51 1.22E+02 1.47E+01 51 1.27E+02 1.42E+01
2 51 6.25E+01 3.44E+01 51 7.03E+01 4.07E+01 51 6.01E+01 2.75E+01 51 7.01E+01 3.53E+01 51 6.55E+01 4.13E+01 51 6.72E+01 4.37E+01
3 0 - - 3 6.47E+02 1.64E+02 0 - - 5 8.84E+02 1.64E+02 2 1.68E+03 4.12E+00 1 2.11E+03 4.11E+00
4 0 - - 1 5.48E+02 4.05E+01 2 3.45E+02 5.01E+01 4 3.23E+02 5.25E+01 51 1.54E+03 3.48E+01 51 1.48E+03 3.59E+01
5 0 - - 0 - - 0 - - 0 - - 50 1.91E+03 8.57E+01 50 2.01E+03 8.25E+01
6 47 6.42E+02 3.08E+01 49 6.56E+02 3.13E+01 48 5.15E+02 2.83E+01 49 5.70E+02 3.07E+01 51 1.10E+03 2.78E+01 51 1.07E+03 2.84E+01
7 1 7.01E+02 3.16E+01 0 - - 0 - - 0 - - 51 1.46E+03 8.94E+00 51 1.55E+03 6.89E+00
8 51 5.07E+02 1.73E+01 51 5.97E+02 1.59E+01 51 4.52E+02 1.46E+01 51 5.26E+02 1.32E+01 51 7.20E+02 2.24E+01 51 7.04E+02 2.32E+01
9 0 - - 0 - - 0 - - 2 8.97E+02 1.46E+01 0 - - 0 - -

10 51 1.63E+02 1.02E+01 51 1.96E+02 9.78E+00 51 1.71E+02 9.93E+00 51 2.15E+02 9.34E+00 51 2.06E+02 1.48E+01 51 2.17E+02 1.47E+01
11 33 1.82E+02 1.22E+01 42 2.03E+02 1.13E+01 35 1.60E+02 1.09E+01 39 1.75E+02 1.12E+01 51 2.91E+02 1.10E+01 51 2.68E+02 1.07E+01
12 0 - - 0 - - 11 1.47E+03 9.71E+00 12 1.54E+03 8.98E+00 0 - - 0 - -
13 0 - - 0 - - 0 - - 0 - - 47 2.01E+03 1.75E+01 49 2.12E+03 1.66E+01
14 51 8.47E+01 1.16E+01 51 7.77E+01 1.11E+01 51 7.06E+01 7.51E+00 51 7.48E+01 7.89E+00 51 8.35E+01 1.22E+02 51 7.83E+01 9.78E+01
15 51 5.42E+01 5.39E+00 51 6.15E+01 5.46E+00 51 5.76E+01 5.43E+00 51 6.65E+01 5.43E+00 51 5.88E+01 5.23E+00 51 6.04E+01 5.28E+00

Table 18: Clustering and population diversity on the CEC2015 in 30D.

SHADE Db SHADE L-SHADE DbL SHADE jSO DISH
f #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD
1 51 1.74E+02 9.53E+00 51 2.51E+02 1.00E+01 51 1.51E+02 9.18E+00 51 2.22E+02 9.57E+00 51 2.61E+02 8.79E+00 51 2.93E+02 9.38E+00
2 51 7.63E+01 6.80E+00 51 9.50E+01 7.62E+00 51 7.06E+01 6.67E+00 51 9.05E+01 7.18E+00 51 1.13E+02 9.49E+00 51 1.31E+02 1.17E+01
3 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
4 0 - - 0 - - 0 - - 0 - - 51 4.02E+03 5.71E+01 51 4.06E+03 5.79E+01
5 0 - - 0 - - 0 - - 0 - - 50 5.43E+03 1.80E+02 51 5.54E+03 1.77E+02
6 51 2.62E+02 9.11E+00 51 4.90E+02 9.38E+00 51 2.00E+02 8.80E+00 51 3.65E+02 8.63E+00 51 1.93E+03 4.64E+01 51 2.40E+03 4.64E+01
7 0 - - 2 1.40E+03 1.12E+01 7 4.21E+02 1.62E+01 12 6.66E+02 2.11E+01 51 4.21E+03 2.40E+01 51 4.39E+03 2.83E+01
8 51 5.45E+02 1.05E+01 51 8.91E+02 1.23E+01 51 4.26E+02 8.17E+00 51 6.43E+02 1.33E+01 51 3.26E+03 3.52E+01 51 3.30E+03 3.13E+01
9 0 - - 0 - - 2 5.82E+02 7.08E+00 0 - - 23 4.82E+03 6.10E+00 23 4.86E+03 6.14E+00

10 51 3.65E+02 8.50E+00 51 5.01E+02 8.45E+00 51 3.18E+02 8.34E+00 51 4.75E+02 8.25E+00 51 1.22E+03 5.50E+01 51 1.25E+03 5.10E+01
11 51 1.21E+02 8.02E+00 51 1.57E+02 6.82E+00 51 1.13E+02 7.25E+00 51 1.39E+02 6.82E+00 51 1.99E+02 8.25E+00 51 2.24E+02 6.57E+00
12 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
13 0 - - 0 - - 0 - - 0 - - 43 6.83E+03 7.12E+01 40 7.10E+03 6.28E+01
14 51 1.15E+02 6.96E+00 51 1.44E+02 6.82E+00 51 1.08E+02 6.82E+00 51 1.40E+02 7.03E+00 51 1.94E+02 8.51E+00 51 2.21E+02 1.65E+01
15 51 9.94E+01 6.07E+00 51 1.20E+02 6.18E+00 51 9.36E+01 6.13E+00 51 1.12E+02 6.12E+00 51 1.36E+02 5.86E+00 51 1.53E+02 5.80E+00

Table 19: Clustering and population diversity on the CEC2015 in 50D.

SHADE Db SHADE L-SHADE DbL SHADE jSO DISH
f #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD
1 51 2.17E+02 9.70E+00 51 3.05E+02 9.57E+00 51 1.90E+02 9.86E+00 51 3.04E+02 9.70E+00 51 3.34E+02 9.11E+00 51 4.08E+02 9.21E+00
2 51 9.07E+01 7.01E+00 51 1.09E+02 6.94E+00 51 8.48E+01 7.16E+00 51 1.06E+02 7.03E+00 51 1.43E+02 6.93E+00 51 1.67E+02 7.15E+00
3 0 - - 0 - - 0 - - 1 8.86E+02 3.44E+02 5 1.44E+04 1.15E+02 4 1.27E+04 2.49E+02
4 0 - - 0 - - 1 4.86E+02 1.12E+01 0 - - 51 5.81E+03 6.37E+01 51 5.76E+03 6.28E+01
5 0 - - 0 - - 0 - - 0 - - 51 8.16E+03 2.40E+02 51 8.54E+03 2.43E+02
6 51 4.72E+02 8.28E+00 51 7.72E+02 8.19E+00 51 3.02E+02 8.08E+00 51 3.69E+02 7.82E+00 51 4.09E+02 1.15E+01 51 5.27E+02 1.41E+01
7 30 4.45E+02 8.95E+00 13 7.71E+02 9.58E+00 41 2.76E+02 8.12E+00 35 5.87E+02 9.05E+00 51 3.58E+03 1.51E+01 51 4.99E+03 1.99E+01
8 50 1.22E+03 1.15E+01 49 1.37E+03 1.14E+01 51 6.35E+02 8.93E+00 51 8.43E+02 9.96E+00 51 1.26E+03 2.31E+01 51 2.23E+03 3.66E+01
9 3 8.21E+02 7.93E+00 0 - - 11 5.72E+02 8.04E+00 1 9.29E+02 9.67E+00 43 5.74E+03 7.16E+00 34 6.71E+03 6.86E+00

10 51 4.71E+02 7.89E+00 51 5.73E+02 7.89E+00 51 3.78E+02 7.84E+00 51 5.60E+02 7.91E+00 51 8.36E+02 9.10E+00 51 1.42E+03 1.67E+01
11 51 1.27E+02 7.62E+00 51 1.63E+02 7.62E+00 51 1.17E+02 7.48E+00 51 1.56E+02 7.46E+00 51 2.43E+02 7.35E+00 51 2.91E+02 7.35E+00
12 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
13 0 - - 0 - - 0 - - 0 - - 47 1.12E+04 9.15E+01 46 1.08E+04 1.00E+02
14 51 1.58E+02 7.30E+00 51 1.98E+02 7.21E+00 51 1.41E+02 7.14E+00 51 1.78E+02 7.10E+00 51 2.26E+02 6.87E+00 51 2.62E+02 8.73E+00
15 51 1.59E+02 7.25E+00 51 1.72E+02 7.24E+00 51 1.38E+02 7.08E+00 51 1.56E+02 7.06E+00 51 2.03E+02 6.74E+00 51 2.26E+02 6.69E+00
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Table 20: Clustering and population diversity on the CEC2015 in 100D.

SHADE Db SHADE L-SHADE DbL SHADE jSO DISH
f #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD #runs Mean CO Mean PD
1 51 2.40E+02 9.25E+00 51 3.07E+02 9.58E+00 51 1.90E+02 9.47E+00 51 2.79E+02 1.01E+01 51 3.81E+02 9.84E+00 51 4.65E+02 9.85E+00
2 51 1.92E+02 8.59E+00 51 1.96E+02 8.59E+00 51 1.56E+02 8.50E+00 51 1.75E+02 8.57E+00 51 2.37E+02 8.12E+00 51 2.62E+02 8.13E+00
3 0 - - 0 - - 1 1.48E+03 5.03E+02 1 1.34E+03 5.06E+02 3 2.65E+04 3.25E+02 2 2.65E+04 2.86E+02
4 0 - - 2 7.25E+02 8.47E+00 0 - - 1 4.44E+02 8.32E+00 51 6.19E+03 2.99E+01 51 6.10E+03 2.59E+01
5 0 - - 0 - - 0 - - 0 - - 51 1.45E+04 3.49E+02 51 1.46E+04 3.48E+02
6 51 2.64E+03 7.50E+00 51 4.02E+03 7.32E+00 51 2.02E+03 8.10E+00 51 3.50E+03 7.28E+00 51 2.95E+03 7.53E+00 51 3.82E+03 7.09E+00
7 37 3.87E+02 8.80E+00 26 7.45E+02 8.96E+00 47 2.62E+02 8.28E+00 45 5.35E+02 8.59E+00 51 3.63E+03 9.48E+00 51 6.95E+03 1.26E+01
8 33 6.99E+03 1.08E+01 7 7.64E+03 9.26E+00 51 4.95E+03 8.18E+00 51 7.19E+03 8.56E+00 51 5.54E+03 8.07E+00 51 5.94E+03 8.17E+00
9 10 5.70E+02 9.85E+00 0 - - 7 7.65E+02 9.48E+00 5 7.57E+02 9.81E+00 50 7.55E+03 8.58E+00 48 1.02E+04 8.35E+00

10 51 1.05E+03 8.14E+00 51 1.04E+03 8.44E+00 51 6.13E+02 7.71E+00 51 8.20E+02 8.10E+00 51 9.96E+02 7.83E+00 51 1.11E+03 7.73E+00
11 51 1.50E+02 8.92E+00 51 1.96E+02 8.78E+00 51 1.34E+02 8.89E+00 51 1.85E+02 8.72E+00 51 3.08E+02 8.51E+00 51 3.86E+02 8.46E+00
12 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
13 0 - - 0 - - 0 - - 0 - - 50 1.89E+04 1.73E+02 50 1.92E+04 1.71E+02
14 51 5.66E+02 7.74E+00 51 5.62E+02 7.80E+00 51 3.88E+02 7.53E+00 51 4.34E+02 7.48E+00 51 5.01E+02 7.23E+00 51 5.25E+02 7.21E+00
15 51 4.39E+02 8.85E+00 51 4.30E+02 8.71E+00 51 3.20E+02 8.60E+00 51 3.39E+02 8.78E+00 51 4.12E+02 8.39E+00 51 4.37E+02 8.36E+00

Table 21: Time complexity according to the CEC2015 benchmark - SHADE vs. Db SHADE.

SHADE Db SHADE
D T0 T1 T2 (T2 - T1)/T0 T2 (T2 - T1)/T0
10 2.53E+02 4.02E+02 1.22E+04 4.68E+01 1.22E+04 4.68E+01
30 2.53E+02 1.36E+03 1.52E+04 5.47E+01 1.52E+04 5.49E+01
50 2.53E+02 2.52E+03 1.87E+04 6.41E+01 1.82E+04 6.19E+01

100 2.53E+02 6.49E+03 2.88E+04 8.82E+01 2.79E+04 8.46E+01

Table 22: Time complexity according to the CEC2015 benchmark - L-SHADE vs. DbL SHADE.

L-SHADE DbL SHADE
D T0 T1 T2 (T2 - T1)/T0 T2 (T2 - T1)/T0
10 2.53E+02 4.02E+02 1.20E+04 4.60E+01 1.20E+04 4.58E+01
30 2.53E+02 1.36E+03 2.53E+04 9.45E+01 2.49E+04 9.32E+01
50 2.53E+02 2.52E+03 4.39E+04 1.64E+02 4.31E+04 1.61E+02

100 2.53E+02 6.49E+03 1.31E+05 4.92E+02 1.29E+05 4.85E+02

Table 23: Time complexity according to the CEC2015 benchmark - jSO vs. DISH.

jSO DISH
D T0 T1 T2 (T2 - T1)/T0 T2 (T2 - T1)/T0
10 2.53E+02 4.02E+02 1.24E+04 4.72E+01 1.23E+04 4.72E+01
30 2.53E+02 1.36E+03 2.50E+04 9.34E+01 2.41E+04 8.98E+01
50 2.53E+02 2.52E+03 4.02E+04 1.49E+02 3.88E+04 1.43E+02

100 2.53E+02 6.49E+03 9.06E+04 3.32E+02 8.91E+04 3.27E+02
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Table 24: Friedman ranks for algorithms over CEC2015 (aggregated 10D functions).

Rank Name F-rank
0 DISH 3.2
1 jSO 3.3
2 DbL-SHADE 3.4
3 L-SHADE 3.6
4 SHADE 3.6
5 Db SHADE 4.0

Table 25: Friedman ranks for algorithms over CEC2015 (aggregated 30D functions).

Rank Name F-rank
0 DISH 2.8
1 jSO 3.0
2 DbL-SHADE 3.1
3 Db SHADE 3.6
4 L-SHADE 3.8
5 SHADE 4.6

Table 26: Friedman ranks for algorithms over CEC2015 (aggregated 50D functions).

Rank Name F-rank
0 DISH 2.6
1 DbL-SHADE 3.0
2 jSO 3.3
3 Db SHADE 3.6
4 L-SHADE 4.0
5 SHADE 4.5

Table 27: Friedman ranks for algorithms over CEC2015 (aggregated 100D functions).

Rank Name F-rank
0 DISH 2.9
1 jSO 3.1
2 DbL-SHADE 3.4
3 L-SHADE 3.4
4 Db SHADE 3.6
5 SHADE 4.6
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Table 28: Friedman ranks for algorithms over CEC2015 (aggregated all 10D, 30D, 50D, and 100D functions).

Rank Name F-rank
0 DISH 2.9
1 DbL-SHADE 3.2
2 jSO 3.2
3 Db SHADE 3.7
4 L-SHADE 3.7
5 SHADE 4.3

Table 29: Friedman test post-hoc procedures for α = 0.05, comparing the CEC2015 aggregate median results (D = 10),
the reference algorithm is the top performing DISH algorithm. Bonferroni-Dunn’s procedure rejects those hypotheses
that have a p-value ≤0.01 and for Holm’s p ≤0.01, Hommel’s p ≤0.01, Holland’s p ≤0.0102, Finner’s p ≤0.0102, and
Li’s p ≤0.00814, respectively.

Rank (k) Algorithm z =
R0 − Rk

S E
p Holm/Hochberg/Hommel Holland Rom Finner Li

5 Db SHADE 1.17 0.242 0.01 0.0102 0.0105 0.0102 0.00814
4 SHADE 0.634 0.526 0.0125 0.0127 0.0131 0.0203 0.00814
3 L-SHADE 0.586 0.558 0.0167 0.017 0.0167 0.0303 0.00814
2 DbL-SHADE 0.342 0.733 0.025 0.0253 0.025 0.0402 0.00814
1 jSO 0.195 0.845 0.05 0.05 0.05 0.05 0.05

Table 30: Friedman test post-hoc procedures for α = 0.05, comparing the CEC2015 aggregate median results (D = 30),
the reference algorithm is the top performing DISH algorithm. Bonferroni-Dunn’s procedure rejects those hypotheses
that have a p-value ≤0.01 and for Holm’s p ≤0.0125, Hochberg’s p ≤0.01, Hommel’s p ≤0.0125, Holland’s p ≤0.0127,
Rom’s p ≤0.0105, Finner’s p ≤0.0203, and Li’s p ≤0.0121, respectively.

Rank (k) Algorithm z =
R0 − Rk

S E
p Holm/Hochberg/Hommel Holland Rom Finner Li

5 SHADE 2.63 0.00842 0.01 0.0102 0.0105 0.0102 0.0121
4 L-SHADE 1.42 0.157 0.0125 0.0127 0.0131 0.0203 0.0121
3 Db SHADE 1.07 0.283 0.0167 0.017 0.0167 0.0303 0.0121
2 DbL-SHADE 0.439 0.661 0.025 0.0253 0.025 0.0402 0.0121
1 jSO 0.293 0.77 0.05 0.05 0.05 0.05 0.05

Table 31: Friedman test post-hoc procedures for α = 0.05, comparing the CEC2015 aggregate median results (D = 50),
the reference algorithm is the top performing DISH algorithm. Bonferroni-Dunn’s procedure rejects those hypotheses
that have a p-value ≤0.01 and for Holm’s p ≤0.0125, Hochberg’s p ≤0.01, Hommel’s p ≤0.0125, Holland’s p ≤0.0127,
Rom’s p ≤0.0105, Finner’s p ≤0.0203, and Li’s p ≤0.0215, respectively.

Rank (k) Algorithm z =
R0 − Rk

S E
p Holm/Hochberg/Hommel Holland Rom Finner Li

5 SHADE 2.73 0.00629 0.01 0.0102 0.0105 0.0102 0.0215
4 L-SHADE 2 0.0454 0.0125 0.0127 0.0131 0.0203 0.0215
3 Db SHADE 1.37 0.172 0.0167 0.017 0.0167 0.0303 0.0215
2 jSO 0.976 0.329 0.025 0.0253 0.025 0.0402 0.0215
1 DbL-SHADE 0.537 0.591 0.05 0.05 0.05 0.05 0.05
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Table 32: Friedman test post-hoc procedures for α = 0.05, comparing the CEC2015 aggregate median results (D = 100),
the reference algorithm is the top performing DISH algorithm. Bonferroni-Dunn’s procedure rejects those hypotheses
that have a p-value ≤0.01, and for Holm’s p ≤0.01, Hommel’s p ≤0.01, Holland’s p ≤0.0102, Finner’s p ≤0.0102, and
Li’s p ≤0.0101, respectively.

Rank (k) Algorithm z =
R0 − Rk

S E
p Holm/Hochberg/Hommel Holland Rom Finner Li

5 SHADE 2.44 0.0147 0.01 0.0102 0.0105 0.0102 0.0101
4 Db SHADE 0.976 0.329 0.0125 0.0127 0.0131 0.0203 0.0101
3 L-SHADE 0.683 0.495 0.0167 0.017 0.0167 0.0303 0.0101
2 DbL-SHADE 0.634 0.526 0.025 0.0253 0.025 0.0402 0.0101
1 jSO 0.244 0.807 0.05 0.05 0.05 0.05 0.05

Table 33: Friedman test post-hoc procedures for α = 0.05, comparing the CEC2015 aggregate median results (D = 10,
D = 30, D = 50, and D = 100 together), the reference algorithm is the top performing DISH algorithm. Bonferroni-
Dunn’s procedure rejects those hypotheses that have a p-value ≤0.01 and for Holm’s p ≤0.0125, Hochberg’s p ≤0.01,
Hommel’s p ≤0.0166, Holland’s p ≤0.0127, Rom’s p ≤0.0105, Finner’s p ≤0.0402, and Li’s p ≤0.0319, respectively.

Rank (k) Algorithm z =
R0 − Rk

S E
p Holm/Hochberg/Hommel Holland Rom Finner Li

5 SHADE 4.22 2.43e-05 0.01 0.0102 0.0105 0.0102 0.0319
4 L-SHADE 2.34 0.0192 0.0125 0.0127 0.0131 0.0203 0.0319
3 Db SHADE 2.29 0.0218 0.0167 0.017 0.0167 0.0303 0.0319
2 DbL-SHADE 0.976 0.329 0.025 0.0253 0.025 0.0402 0.0319
1 jSO 0.854 0.393 0.05 0.05 0.05 0.05 0.05

6. Results Discussion

Firstly, the results for the CEC2015 benchmark set is discussed here. As can be seen in Ta-
bles 1, 5 and 9, there is not much of an improvement in the performance of the algorithm in
lower (10D) dimensional objective space (in all cases combined – 1 improvement and 1 wors-
ening), but the situation is much more interesting in 30 (Tables 2, 6 and 10), 50 (Tables 3, 7
and 11) and 100 (Tables 4, 8 and 12) dimensional objective space. There, the score is 5 improve-
ments against 1 worsening (30D), 6 improvements and 2 worsening (50D), 5 improvements and
1 worsening (100D) in the case of SHADE, 5 improvements against 1 worsening (30D), 9 im-
provements against 1 worsening (50D), 6 improvements and 2 worsening (100D) in the case of
L-SHADE, and 3 improvements (30D), 7 improvements (50D), 6 improvements against 2 wors-
ening (100D) in the case of jSO. Such results lend weight to the assumption that the modification
might be useful for preserving exploration ability in higher dimensional objective spaces.

The Friedman ranking in Tables 24–28 and their corresponding post-hoc analyses in Ta-
bles 29–33, respectively, further clarify how the DISH (and also DbL SHADE) improves in ranks
considering the compared algorithms and varying through dimensionality. As it might have been
not so easy to see from counting Wilcoxon rank-sum outcomes, based on the relative Friedman
ranks’ improvement in Tables 24–28, the DISH algorithm performance mostly improves gradu-
ally with higher dimensions, taking values 3.2, 2.8, 2.6, and 2.9 for the D = 10, D = 30, D = 50,
and D = 100, respectively. Several overall improvements are also significant, as reported based
on the post-hoc procedures in Tables 29–33.

As for the CEC2017 benchmark set, experiments were performed only for the jSO algorithm
(winner of the 2017 competition) to confirm the efficiency and robustness of the proposed ap-
proach. Results are presented for 10, 30, 50 and 100 dimensional settings in Tables 13, 14, 15,
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and 16, and they are discussed in detail below.
The findings can be summarized as follows:

• The presented convergence plots (Figures 1–9) show the initially similar convergence of
the distance based variants, which, in later stages of the optimization process, nonetheless
reach better objective function values.

• The numerical analyses in Tables 17, 18, 19, and 20 also support the introduction of dis-
tance based variants. These analyses show for the higher dimensional settings (30D, 50D
and 100D), that, for almost all cases (except f 9 for 50D), the clusters are detected in
later stages of a distance based variants’ run (see parameter Mean CO). For the original
SHADE/L-SHADE/jSO versions, the clustering inside the population is detected earlier.
As already mentioned, the lowest dimensional settings of 10D has revealed mixed results.
The clusters are occurring even sooner for Db variants (Table 17, f 14 for SHADE strate-
gies pair, f 11 for the L-SHADE strategies pair). Furthermore, the occurrence of clusters
is not so symmetric between the pairs as for higher dimensions.

• It is possible to link the significantly improving ranking results from Tables 24–28 and
clustering analysis in Tables 17–20. Improvements of the results in Tables 2, 3, 4, 6, 7, 8,
10, 11, and 12 denoted by the ”+” symbol are always connected with occurrence of later
clustering, none at all, or a lesser amount of cluster occurrence from 51 total instances
(for the last option, see, for example, column #runs in Table 19, f 7, both SHADE and
L-SHADE pairs). Thus, the higher population diversity is maintained for a higher amount
of iterations.

• The clustering analysis reveals the pattern, that the mean population diversity (Tables 17–
20) is similar for the compared pairs of SHADE vs. Db SHADE, L-SHADE vs. DbL SHADE,
and jSO vs. DISH. But, it is necessary to keep in mind, that it was calculated at the time
of clusters’ first occurrence, which in the case of distance based parameter adaptation, is
later in the optimization process. Therefore, the algorithms reach the same stage of op-
timization, but at different times, which is the evidence of the more extended exploration
phase of the distance based variants, and shows that the proposed distance based design of
parameter control is effective.

• For the unimodal test functions, the distance based approach proved not to be beneficial.
For those cases, the prolonged exploration is not suitable, since the earlier population clus-
tering supports the convergence towards the global extreme. This drawback is further sup-
ported by significantly worse optimization results of Db SHADE (Table 3), DbL SHADE
(Table 7), and jSO (Table 11) for f 1 in 50D.

• Results for the CEC2017 benchmark set with jSO and DISH counterparts lend weight
to the argument that the proposed approach is robust and improves the performance of
SHADE family based algorithms significantly in higher dimensions. From Tables 13 – 16,
it is possible to see the similar pattern of increasing performance, together with the gradual
increase of dimensionality. There is almost no significant difference in the performance
for 10 and 30D. For higher dimensional settings of 50 and 100D, there is present a clearly
visible boost to the performance of DISH, resulting in 14 wins and zero losses (50D, Ta-
ble 15), and 19 wins and 1 loss (100D, Table 16). Overall, the results are very convincing,
as the winning algorithm of the CEC 2017 competition has been improved significantly.
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7. Conclusion

In this paper, a relatively simple and straightforward modification is proposed and tested to
the control parameter adaptation in SHADE. The basic idea is that an adaptation mechanism
based on the change in position rather than a change in objective function value, may help to
avoid the premature convergence of the algorithm in higher dimensional spaces. This idea is
confirmed experimentally in the case of the optimization of the CEC2015 benchmark set in 10,
30, 50, and 100 dimensions. Also, the most up-to-date DE variant - jSO enhanced by distance
based parameter adaptation is tested on the CEC2017 benchmark set in 10, 30, 50, and 100
dimensions.

The most important feature of this modification is that it can be used easily as a framework,
and implemented into any of the SHADE-based state-of-the-art variants. On the other hand,
the drawback of this method is a slightly higher computational complexity in determining the
weights for historical memory updates of control parameter arrays (distance computation against
the simple difference between objective function values). However, time complexity measure-
ments have shown that this drawback plays no role in the overall computation time.

The future work will focus on further experimentation with the proposed modification and ap-
plying it to more algorithms and challenges in optimization. For example, the proposed approach
might also be useful for constrained problems, where constrained areas would be addressed by
increased changes of an individual’s components.
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